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SUMMARY

An open-circuit wind tunnel designed to operate in a large vacuum chamber was built in 1975 at

NASA Ames Research Center to investigate saltation threshold, flux, deflation rates, and other aeolian

phenomena on the planet Mars. The vacuum chamber will operate at pressures as low as 4 mbar, and the

tunnel operates at windspeeds as high as 150 m/sec. Either air or carbon dioxide can be used as the

working fluid. It was found that, to a first-order approximation, the same dynamic pressure was required

at martian pressure to entrain or saltate particles as was required on Earth, although wind and particle

speeds are considerably higher at martian pressure.

A second wind tunnel, designed to operate aboard the NASA KC-135 0-g aircraft to obtain informa-

tion on the effect of gravity on saltation threshold and the interparticle force at 0 g, is also described and

test data are presented.

Some of the experiments are summarized and various aspects of low-pressure aeolian entrainment

for particles 12 to 100 gm in diameter are discussed, some of them unique to low-pressure testing and

some common in Earth-pressure particle transport testing. The facility, the modes of operation, and the

materials used are described. Although many fundamental questions about aeolian phenomena are

answered, the global dust storms observed on Mars have not yet been satisfactorily duplicated or

explained with these wind tunnel tests.

INTRODUCTION

Before the Viking Lander missions to Mars in 1976 it was important to determine what surface wind

velocities on Mars cause the large dust storms observed from the Earth. Would such winds be of a

magnitude hazardous to the landing of Viking? To answer this and other questions, a Mars Surface

Wind Tunnel (MARSWIT, fig. 1) was designed and built at NASA Ames Research Center, and it began

operation in 1975. The first question to be addressed was, What minimum surface winds are required to

move the optimum-sized particles (i.e., the most easily moved particles), and what is the size of those

particles? How much does the required wind velocity increase for particles larger and smaller than the

optimum-sized ones?

After the Viking landed, on-board instrumentation measured the surface winds. These measurements

indicated surface wind intensities close to those required to move the optimum-sized particles but well

below those required for the entrainment of the fine particles observed in the martian atmosphere. Thus

it was necessary to gain additional insight into the mechanism of fine-particle entrainment. What is the

effect of the lower martian gravity? Does the martian atmosphere, which consists largely of CO2, affect

the interparticle force and thus affect the saltation threshold? What is the effect of surface-temperature



gradientson saltation threshold and on particle entrainment into the atmosphere? How does surface

roughness affect saltation threshold and flux? What errors does the wind tunnel introduce? These ques-

tions have led to further research in MARSWIT and also in the Carousel Wind Tunnel (CWT) which is

used to experimentally investigate the effect of gravity and the interparticle force which plays an impor-

tant role in the aeolian entrainment of fine material. Subsequent tests also addressed the questions of

deflation rates, flux, particle velocity, erosion of surface features by windblown material, ripple forma-

tion, and other aeolian processes on Mars.

This paper does not address all of these questions, but instead concentrates on those portions of the

experiments conducted over the past 15 years that deal with the entrainment of fine particles and the

errors that may affect the results obtained. References to other reports that discuss other aeolian matters

investigated in MARSWIT are included.

WIND TUNNELS

MARSWIT is an open-circuit wind tunnel located in a large (4058 m 3) vacuum chamber that can be

evacuated to 4 mbar. The chamber is 30 m high and has a floor area of 164 m 2. The tunnel, located cen-

trai]y ]nthe vacuum chamber (flgl 2), is 13 m long and has a test section 4.8 m long by 1.2 mwide by

0.9 m high' _ tunnel is driven by high-pressure air (up to 9.6 bar) ejected through an arrangement of
72 small nozzles located near the exit of the tunnel, providing a maximum velocity of about 140 mlsec

at 5 mbar. For most experiments, air is used in the Chamber and to drive the tunnel; however, the entire

chamber has been filled with CO2 for some tests and the tunnel ejectors were driven by CO2 at 20 bar,

giving a maximum velocity of 150 m/sec at 5 mbar. At an ambient pressure of 1 bar, the tunnel will
operate at up to 10.5 m/sec. The tunnel is used primarily for tests of particle threshold, flux, deflation,

ripple and bedform evolution, and particle flow around fixed objects.

The entrance to the tunnel has a rectangular-sectioned flow straightener to remove large-scale turbu-

lence, it consists of 88 rectangular openings 10 cm by 10 cm by 25 cm deep. The floor of the tunnel is

covered with 700-I.tm diameter sand particles glued to the floor, from the entry through the test section.

The sand is overlaid with 2- to 3-cm pebbles spaced about 10 cm apart for the first 2 m; their function is

to add surface roughness to help "trip" the boundary layer, causing an earlier transition from a laminar
to a turbulent boundary layer.

Saltation threshold, at which most of the surface particles appear to be bouncing along the bed

(saltation<saltare (L.), to leap or dance), is detected by three different devices: a laser transmissometer;

a particle electrostatic charge detector; and a closed-circuit, high-resolution video system. One or more

of these systems is used for each experiment, the effectiveness of each system being dependent on the

size and composition of the particles being tested. Particles smaller than about 60 I.tm in diameter do not

saltate but tend to follow the turbulent windstream when they are entrained in the flow.

The transmissometer's laser is located at the front of the tunnel. The laser beam, traversing the

length of the tunnel, is reflected back by a mirror at the end of the tunnel and is received by a photo cell

located alongside the laser. Thus the beam traverses the bed twice. The mirror is protected by a shield

that aerodynamically deflects the particles around the mirror to prevent rapid erosion of the surface. The
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beam is located about 2 cm above the surface of the test bed and is most effective for detection of parti-

cles of 60 to 600 I.tm.

The electrostatic saltation detector (ESD) consists of a 50-ram-diameter copper disk mounted on an

insulated holder positioned normal to the particle flow. Because moving particles develop a tribocharge

(an electrostatic charge resulting from friction), the disk will acquire a charge when it is struck by the

particles. This charge is measured as a current on a Keithly electrometer. The particles will obtain both

positive and negative charges, depending on their size and composition. The ESD measures the net

charge. The ESD has been used to detect motion of particles of 8 to 1200 gm, but is especially effective
for the smaller sizes.

The closed-circuit TV system features remote pitch, yaw, and focus. It is valuable for surveying the

test bed to determine its condition during runs, and for saltation detection for particles larger than

200 gin. It is essential when monitoring flow deposition and erosion around fixed objects.

The tunnel has undergone extensive calibration with air and CO2 at pressures from 1 bar to 4 mbar.

(ref. 1).

The CWT is a small, portable wind tunnel used for low-gravity and reduced-pressure tests. It con-

sists of two concentric cylinders constructed of clear Lexan plastic, each 30 cm deep. The the outer

cylinder is 60 cm in diameter and the inner cylinder is 40 cm in diameter; the space between the cylin-

ders is the test section (fig. 3). The inner cylinder is spun at speeds of up to 3000 rpm by a variable-

speed motor driving a belt-and-pulley arrangement, which causes an airflow between the cylinders.

Instrumentation consists of a tachometer, which measures the inner-cylinder rotational speed, and an

accelerometer which measures the gravity. The tunnel has been used onboard the NASA KC-135 0-g

test aircraft to obtain particle thresholds at 0-1.8 g (ref. 2). This information provided verification of the

equations used to correct for the difference between thresholds obtained at Earth gravity and those

which would be obtained at martian or other gravity levels. The CWT also provided a convenient means

of measuring the interparticle force, which becomes the predominant force resisting entrainment at 0 g.

This tunnel has also been used in the vertical gun vacuum chamber (VGCG) to obtain particle thresholds

as low as 15 mbar. This capability is especially useful when only a small amount of material is available

for testing, because the particles are confined in the closed system and not dispersed outside the tunnel,

as is the case with MARSWIT. Threshold information is obtained primarily visually, with videotaping

of some of the runs for later analysis.

The CWT was characterized and calibrated with a hot-wire anemometer to obtain the flow character-

istics. The friction threshold velocity, U,t, was obtained by comparing thresholds measured in the CWT

for several types and sizes of particles with thresholds obtained in MARSWIT and other tunnels. In the

symbol U, t,

U, = ('_/p) t_

and U, t is U, at threshold. The symbol _ is the drag per cm 2, and p is the fluid density; "_ is a func-
tion of the velocity and also of the roughness of the surface over which the wind is flowing, and it can

be determined by measuring, with a suitable anemometer, the slope of the wind velocity as a function of



the log of the height above the surface. Conversely, if U, t is known for a particular particle, x may be
determined for a particular wind tunnel by observing the wind velocity at saltation threshold.

DESCRIPTION OF TESTS

Bed Length

The length of the test bed is an important parameter in threshold experiments, as the threshold will

be higher if the bed is too short. Threshold decreases as bed length increases until a certain critical

length is reached, after which further increases in bed length do not affect threshold. This critical length

is a function of the tunnel upstream surface, the particle size, and the ambient pressure used during the

test, which affects the Reynolds number. A series of threshold experiments was performed early in the

testing program, and it was determined that a test-bed length of 200 cm is longer than the critical length

required to give minimum and consistent thresholds for all ambient pressures of interest.

Emplacement of Material

The material to be tested was placed on the floor of the tunnel, usually by pouring the material on

the floor and then smoothing it to a uniform depth using a leveling device that is rolled over the bed.

This leveling device is a trolley with four small rubber wheels that ride on the tunnel floor on either side

of the bed. Several crosspieces connecting the wheels smooth the bed as the trolley traverses the bed

length. The resulting bed is about 1 cm deep, 25 cm wide, and 200 cm long. It is located in the center of

the test section between the two side walls, with the front of the bed about 5 m from the tunnel entry.

For material less than 40 _tm in diameter, the initial threshold may be greatly affected by the method

of placement of the material on the tunnel floor (ref. 3). Although this was not known at the time the

MARSWIT tests were performed, it fortunately does not affect the low-pressure data obtained, as there

is considerable outgassing of entrapped air when the ambient pressure in the tunnel is reduced to martian

pressure. This outgassing loosens and redistributes the bed of particles, making bed placement technique

far less important. For tests conducted at atmospheric pressure, the initial value of the threshold for par-

ticles of under 40 gm is less for a bed that is emplaced by sprinkling the material through a fine sieve

than that for a bed emplaced by pouring the material on the floor and smoothing as previously described.

However, after the initial threshold has been obtained, the surface is modified by the wind, and the

effect of placement is reduced or eliminated. In the low-pressure tests conducted in MARSW1T, the

atmospheric threshold was usually obtained both before and after the low-pressure phase. The final

values obtained at 1 atm would thus be from a bed that had been modified by both outgassing and wind-

distribution of particles. As considerable time is required for outgassing of the finer particles (more time

than could be allowed at low pressure during the martian threshold tests), it is necessary to adjust the

threshold value upward to account for this (ref. 4). Thresholds were obtained in MARSWIT by starting

and stopping the tunnel operation several times under the same condition, gradually increasing the wind

velocity until saltation or entrainment was detected by one or more of the three methods described

earlier. In nearly every case in MARSWIT, the initial threshold at low pressure is lower than subsequent

thresholds. This is attributed to the outgassing effect described earlier, which evidently leaves a few
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easilyentrainedparticleson thesurfaceof thebed.After thesurfacehasbeenmodifiedby thewind,
subsequentthresholdsarehigher(ref. 5).

In someexperimentsperformedwith finematerialin theCWT, thetunnelwasstartedandstoppeda
numberof times.Whenthetunnelis stopped,theparticlesaredepositedfrom suspensionor saltation
onto thetunnel floor. Thethresholdsobtainedaftertheparticlesweredepositedin sucha mannerwere
reducedcomparedto theoriginal threshold.This was,however,not aconclusivetest,astherearesev-
eralfactorsinvolved.For example,thethresholdreductioncouldbecausedby theparticlesagglomerat-
ing to largersizesduringsubsequentruns.Also, theparticlessettlenotonly on thefloor, butalsoalong
theverticalportionsof theouterwall, wheretheyaremoreeasilyentrainedbecausegravity is nothold-
ing themto thefloor. Thesemoreeasilymovedparticlesin turn initiate thresholdin themainbedof
particles.It thereforeis not certainthatthereductionin thresholdwasaresultof theaeolianplacement
of thematerialandnot of otherfactors. It shouldbenotedthattheCWT obtainsa dynamicratherthana
staticthreshold(ref. 5).This is becausein theCWT theparticlesareconfinedandtheyrecirculatein the
tunnel,thefirst particlesto moveinitiating themovementof otherparticles.In MARSWIT, anopen-
circuit wind tunnel,theparticlesthatsaltateareremovedfrom thetestastheyexit thetunnel.

Threshold Determination

Thresholdis ajudgmentcall--it dependson theobserver.It is definedasthewindspeedat which
most of the particles are saltating. For mono-dispersed, uniformly shaped particles, this would cover a

relatively small velocity range. However, most particle test beds are not monodispersed, and particle

movement from first movement to full threshold covers a large velocity range; thus it is difficult, by

visual observations, to ascertain when "most" of the particles are saltating. This range of velocities nar-

rows with decreasing particle size; but for smaller particles, it is also much more difficult to determine

when most particles are moving. Instrumented threshold detectors, such as the laser interferometer or

the electrostatic charge detector, on which a signal level can be repeated, tend to provide better (more

repeatable) threshold data than visual determinations do, but these detectors do not give an indication of

the percentage of the surface particles that are moving.

Measurements

Besides threshold, wind tunnel instrumentation measures ambient pressure and temperature, and

total head pressure. Total head pressure is measured by two separate probes--a fixed probe located

20 cm below the tunnel ceiling, and a boundary layer probe that is able to traverse from the floor to a

height of 40 cm. The pressure measurements from these two probes are read on separate pressure trans-

ducers, and they are compared to each other when the boundary layer probe is sufficiently high above

the floor as to be out of the boundary layer and thus reading free-stream pressure. At martian surface

pressure the boundary layer is about 14 cm thick at the probe location. Velocity is calculated using the

pressures and temperatures measured, and U, is determined by the ratio of U, to Ufree determined by

previous boundary layer measurements and calculations, as described earlier (refs. 2 and 6).
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RESULTS AND DISCUSSION

Beds of Uniform-Sized Particles

Data from the tests done with walnut shell, glass microspheres, basalt, and fly ash are presented in

figures 4-7. To a large extent, thresholds obtained at martian atmospheric density follow the same pat-

tern as those obtained at Earth density, with a minimum threshold for particles between 60 and 100 ktm

in diameter and larger thresholds for both smaller and larger particles. Glass microspheres indicated a

minimum threshold for 60-ktm particles whereas walnut shell had a minimum value for particles of

about 100-I.tm size. The difference between these two thresholds may be due to a number of factors such

as particle shape, density, degree of sorting, moisture content, surface conditions, or electrostatic charge.

Only a limited range of thresholds was obtained for fly ash and basalt because the tunnel would not

operate at high enough velocities to obtain thresholds at higher pressures. To a first-order approxima-

tion, the dynamic pressure for saltation threshold is the same for martian density as for Earth density

(fig. 8). Thus

UMars = UEart h (PEarth/PMars)1/2

since dynamic pressure, q, is

q = 1/2 pU 2

where p represents the respective atmospheric density, and U is the free-stream velocity.

Beds of Mixed Particle Sizes

Beds of particles of mixed particle sizes were tested to determine whether fines would be more

easily entrained if mixed with larger particles. One test consisted of preparing a 1:1 mixture by volume

of very fine particles (Xerox toner, about 8 gm), with 100-1am microspheres. These were placed in the

usual manner in the test section and the wind was brought to a velocity just above saltation-threshold

velocity. The 100-1am microspheres were selectively removed from the bed by the wind, leaving the

Xerox toner. Increasing the velocity removed only a few more particles, and it appeared to the eye that

finally all the microspheres had been removed. The windspeed could not be raised high enough to move

the Xerox toner. This test was performed at both Earth and Mars atmospheric densities, with identical

results.

The conclusions reached from these experiments was that with mixtures of near-optimum-sized par-

ticles and fines, the optimum-sized particles will saltate, leaving the fines behind. Very few, if any, fines

are entrained by this method.



Effects of Surface Roughness

A second experiment consisted of completely covering a bed of loosely scattered 1-cm pebbles with

100-I.tm sand particles. This test was conducted in a wind tunnel that duplicates the Venus surface den-

sity, with CO2 gas used as the working fluid, at 35 bar and room temperature. Initial saltation velocity

was the same as that for the sand alone, but the threshold velocity decreased slightly as soon as the peb-

bles began to be uncovered. The lowered threshold resulted from the roughening of the surface as the

pebbles were exposed. Threshold continued to decrease until the pebbles were about half uncovered, and

then it began to increase sharply. The point was finally reached when no particles were saltating, even at

the highest velocity obtainable, because all the remaining sand was shadowed by the pebbles. The exact

geometry of the final bed is dependent upon the amount of pebbles used and the geometry of their

spacing (fig. 9).

A similar experiment was conducted in MARSWIT at atmospheric pressure (ref. 7). The experi-
menter noticed the increase in threshold as the sand bed was deflated, but did not observe the initial

decrease in threshold when the bed was partially deflated. This may be because of the very long bed that

was used, in which large waves and ripples were formed, or it may be because of the lower Reynolds

number of the tests.

It was concluded that there may be some reduction of threshold for near-optimum-sized particles

mixed with much larger particles as the effective surface roughness is increased by exposure of the

larger particles. This reduction in threshold continues until the more easily moved particles are shielded

from the wind by the larger particles, and then threshold increases dramatically.

Fine Particles Bombarded by Saltating Particles

Another series of tests was conducted in which a bed of sand was placed in front of a bed of fine

material such as crushed basalt, with a small separation between the two beds. The purpose of these tests

was to use the more easily saltated sand to "kick" the fine material into suspension, a process suggested

by Bagnold (ref. 5). The basalt was weighed, and then was placed on a removable portion of the tunnel

floor. The original surface area covered by the basalt was measured. The tunnel velocity was then

brought to 1.5 times the threshold velocity of the sand, but well below the threshold of the fine material,
and thus the sand was caused to saltate across the bed of fine basalt. The basalt bed was monitored by

two high-speed motion picture cameras, one looking down on the bed from above and one looking
across the bed from the side. A review of the films revealed that incoming sand particles skip across the

bed of basalt, kicking up plumes of fines and leaving craters. Most of the fines, however, fall back onto

the bed and are not entrained in the airstream. A particle-catcher beside the bed of basalt was used to

measure the amount of sand hitting the floor per unit area. By measuring the average area covered

by the basalt after the test, and weighing the remnant of basalt, it was possible to determine the mass
of basalt removed as a function of the mass of sand bombarding it. Figure 10 shows that this varies from

0.15 to 0.7 gm of basalt per 1 gm of sand. It was concluded that, while this may be a valid mechanism

to entrain fine material, it is not a very efficient one unless the wind velocity is near the threshold

of the fines. It was expected that a small amount of sand would cause a large amount of fines to
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beentrained.Both200-p.mand500-lamsandwasusedfor theupstreammaterial,andcrushedbasaltand
silicic pumicewereusedfor thefine material.

Effects of Gravity and lnterparticle Force

Investigations into the effects of gravity and the interparticle force were also conducted. These tests

were carried out aboard the NASA KC-135 0-g test aircraft using the CWT (ref. 6). The tests had two

goals: (1) to verify the equations delineating the effect of gravity on threshold and (2) to determine the

interparticle force. The advantage of determining the interparticle force at low or 0 g is that interparticle

force becomes the predominant force at 0 g. If there were no interparticle force, then as gravity

approaches zero, the wind required to entrain material should also approach zero. Thus the wind

required at 0 g is a direct function of the interparticle force.

The NASA KC-135 0-g aircraft flies a series of parabolic arcs which produce 0-0.5 g for a 20- to

30-sec period during each maneuver. During pull-up from the parabolic arcs, the gravity level is

between 1.8 and 2 g. Up to 50 maneuvers are made during a 3-hr flight, each producing a single

saltation-threshold data point.

The tests were conducted in the following manner. The CWT was bolted to the aircraft floor. A

video camera was aligned so that the CWT test section, the rpm meter, and an accelerometer measuring

the gravity level were all in the field of view. The test material was placed between the drums. The tun-

nel velocity was brought up to that anticipated for threshold for the programmed gravity level of the

maneuver, which was well below the threshold at 1 g. The exact gravity level at which particle move-

ment began was recorded. If the particles did not move because of insufficient wind velocity, or if a

higher gravity level was obtained than anticipated, this was noted. A plot of rpm squared versus gravity

level for saltation threshold or non-threshold was prepared. A straight line was faired above the non-

threshold points and through the lowest points for particle movement, and this was defined as the parti-

cle threshold.

Ground walnut shell samples with nominal diameters of 23, 105,700 and 1,080 _m were tested, as

were crushed basalt particles with a 15-t.tm nominal diameter. The interparticle force as a function of

diameter is presented in figures 11 and 12 in table 1.

These values represent the ratio of the velocity required to reach entrainment threshold at 0 g to the

velocity required at 1 g. Some of the tests were conducted with a Tesla coil discharging inside the

CWT. This technique has been used on various erosion devices in which particles confined to a system

become charged and tend to stick to the walls of the devices. Inserting a Tesla coil probe neutralizes the

charge on the particles, and the effect is visibly evident as the particles fall from the walls. The Tesla

coil did not noticeably reduce the threshold in the CWT tests. Calculations and experiments verify that

under many conditions, electrostatic forces are not the predominant interparticle force for the smaller-

sized particles (ref. 8).
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from a few micrometersin diameterto sub-micrometersize,so it would seemthatstill higherwind
velocitiesareneeded.

Caremustbeexercisedwith low-pressuretestsof fine materialin thewind tunnel,astheoutgassing
of air or theboil-off of moisturewhentheambientpressureis quickly reducedhasa lubricatingeffect
which lowersthethreshold.WhethersomeoutgassingprocesscouldoccuronMarsasaresultof rapid
soil heatingfrom solarradiationis uncertain.

Theuseof CO2 gas instead of air does not change the required dynamic pressure needed to initiate

entrainment, and it has no apparent effect on the interparticle force.

The effect of the lower martian gravity does not reduce the threshold level for fine particles to the

point where the predicted winds on Mars will entrain them from the surface directly.

Bombardment of fines by larger particles is a possible method for entraining fines but it is not an

efficient method, and it may have limited application.

Surface roughness reduces threshold velocity only briefly. Soon all the particles are removed from

areas of high turbulence and the remaining particles, being shielded from the wind, are not easily
moved. Threshold then increases above the threshold for smooth surfaces.

Preliminary MARSWIT experiments indicate that temperature gradients, in which the surface tem-

perature is higher than the air temperature, and thus the boundary layer is unstable, may reduce the

velocity required for entrainment as much as 20% and also may increase the amount of material that

goes into suspension.

Dust storms on Mars originated in areas other than those observed by the Viking Lander, and winds

in those areas may be considerably higher than those observed by Viking. Investigators have theorized

that cyclonic winds ("dust devils") may be present on Mars, and these may be responsible for the dust

storms observed, although other mechanisms are also possible (refs. 12 and 13). These cyclonic winds

could produce high wind velocities over a small area, and may supply the wind velocities the wind tun-

nel tests indicate are necessary.

Electrostatics are certainly important in the aeolian processes affecting fine particles, both because

of the interparticle force resisting entrainment and the role of electrostatics in agglomeration. More

study is needed for the determination of the total contribution of electrostatics tQ the interparticle forces.

The effect of particle shape on threshold also needs more investigation. Plate-like particles such as

mica or talc are very difficult to entrain with wind. Entrainment theory usually deals with spherical or

nearly spherical particles. Other particle shapes, such as those found in pollens, may have entrainment

thresholds quite different from those of spherical particles because of mechanical interparticle forces.

Particle sorting techniques need to be improved. Quantities of particles are usually prepared by sift-

ing them through a series of screens. Dry sifting of fine particles is unsatisfactory because smaller parti-

cles cling to the larger particles and may constitute as much as 50% of the sort by mass and many times
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Agglomerate Particle Threshold

Experiments were conducted with naturally formed silt agglomerates. The agglomerates were sorted

to a uniform size of 500 I.tm and the threshold was obtained and compared to that of the unagglomerated

silt (see fig. 9). Although the agglomerates were five times the optimum diameter for threshold they

were still entrained more easily than the unagglomerated silt was.

Agglomerates may be formed on Earth by various processes. The agglomerates used in these tests

were formed by wetting and then drying silt. The resulting cakes were easily broken into nearly spheri-

cal agglomerates which were sorted by sifting. Natural agglomerates are sometimes formed by electro-

statics, but if they are exposed to the atmosphere they tend to pick up moisture and lose their electro-

static charge, and they are ultimately bound together by molecular, chemical, and capillary forces. Since

there is apparently no free water on Mars, there is a question of how long-lasting agglomerates may

form on that planet.

Experiments with basalt grains in a paddle wheel erosion device led to a possibly important discov-

ery. Experiments were run to determine the time required to reduce sand-sized particles of basalt to fines

by moving them inside the device at martian pressure and martian windvelocities. The material was

removed and sized periodically. After several 10-rain periods of running, the median size began to

increase. It was discovered that very strong electrostatic agglomerates were being formed. These

agglomerates were as large as 600 gm and would not pass through a screen when being sorted with a

sonic sifter. If they were physically broken apart, they would readily re-form. It was determined by cal-

culation that at the very high-impact speeds at these low pressures (there was very little air in the erosion

device to cushion the impact), partial melting at the impact points could occur. It was postulated that

minuscule electrets (permanently electrostatically charged areas) (ref. 9) were formed at these melt

points, and this would explain why these agglomerates endure so well. Thus a possible mechanism for

the formation of long-lasting electrostatic agglomerates under dry martian conditions was revealed

(refs. 10 and 11).

The conclusion reached from this research with fines was that one of the most likely ways that fines

could be entrained in the martian atmosphere would be that the fines agglomerate into particle sizes

which are easily saltated. These agglomerates would be easily broken up by the high-impact forces

caused by collision with solid surfaces or with other agglomerates, and the resulting fines would be

entrained. Neither mixing sand with fines nor bombarding fines with sand is an efficient method for

entraining fines.

CONCLUSIONS AND FUTURE WORK

Low-pressure threshold tests 0f vari'ous materials in MARSW1T did not yield any surprising results,

but rather extended our general knowledge of the subject into the low-pressure range. The dynamic

pressure required for panicle entrainment is nearly constant from 1 bar down to 4 mbar. Fine particles

require large wind velocities for aeolian entrainment. The smallest particles entrained in the MARSWIT

facility were 12 _m in diameter, whereas particles observed in the martian atmosphere are believed to be
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thatpercentageby number.Wet sifting improvesefficiencybut initiatesnewproblems,becausethe
materialmustbedriedandseparated.
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APPENDIX A

PARTICLES TESTED

A brief description of the particles used for the fine-particle aeolian saltation threshold experiments,

and the reasons for their use, follows.

Ground Nutshell

Ground shells of various nuts, primarily walnut, have been used for aeolian tests. One of the primary

reasons for this is that the density of nutshell (1.1 to 1.35 gm/cm 3) is less than that of sand or basalt.

This helps to compensate for the lower gravity on Mars. The shape of a ground shell particle is very

much like that of a slightly worn basalt or quartz particle (fig. 14). Nutshell is readily available in pre-

sorted sizes---it is used commercially for cleaning carbon from aircraft turbine blades, because it does

not erode or damage the blades; this is also an advantage in the wind tunnel, since the nutshell, which is

relatively soft, causes minimal abrasion of the tunnel surfaces. Walnut shell was obtained from the

Bernard Sirotta Co. of Brooklyn, NY, and from other sources. Tests were conducted with shell particles

ranging from 12 to 1,080 _tm in diameter (table 2). Walnut shell normally is about 8% moisture by

weight. This is both an advantage and a disadvantage. The advantage is that the particles do not have a

high electrical resistivity and do not tend to retain an electrostatic charge; therefore, they tend not to

form electrostatic agglomerates, and not to have an unduly high interparticle force due to electrostatic

charge. The disadvantage of the moisture content becomes manifest in low-pressure testing, in which the

moisture, if not partially removed lay preheating, causes outgassing of water vapor and fluidization of

the test bed for beds of particles of less than 250-i.tm diameter, and this results in deceptively low

threshold readings (ref. 14).

Glass Microspheres

Glass microspheres of 5- to 710-I.tm diameter, in 12 size classes, were tested. Four size ranges are

reported on herein (table 2). Glass microspheres were chosen because they have nearly the same density

as quartz and are primarily spherical, thus they differ only slightly in these respects from well-rounded

sand grains. They were supplied by the Microbeads Division of the Cataphote Corp., Jackson, MI. The

materials selected were certified by the supplier to be spheroidal and to contain not more than 15%

irregularly shaped particles, not more than 1% sharp angular particles, and not more than 0.5% foreign

materials (fig. 15).

Microspheres give reasonably repeatable threshold data, but the smaller sizes retain high electro-

static charges which cause agglomeration.
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CrushedBasalt

Crushed basalt was obtained from the Geology Department at Arizona State University. Crushed

basalt has a density of 2.83 gm/cm and is of an angular shape (fig. 16). The size range is 1 to 35 I.tm with

a median size of 16.6 I.tm (fig. 17). Threshold was achieved in MARSWIT at only a few of the lower

pressures tested, with the windspeed available. Most of the tests with basalt involved investigating the

process by which the fine material is "kicked" into suspension by being bombarded by more easily

moved larger particles located upstream and saltating over the bed. The upstream particles used in these

tests were 200-I.tm and 500-_tm quartz sand grains (see Results and Discussion).

Tests were run with this basalt in the CWT, at low gravity, in the KC-135 0-g aircraft, where

threshold was obtained from 0 to 1 g.

Silicic Ash

Silicic ash from Sugar Loaf Mountain, San Francisco Peaks, AZ, was tested in MARSWIT (fig. 18).

The ash diameter is between 1.8 and 32 I.tm, with a median size of 13.5 _tm (fig. 19). Threshold was not

obtained at the highest windspeed available. When bombarded with 200-I.tm diameter particles, as

described for the basalt beds, the bed of ash was eroded.

Silt

Initial thresholds were obtained with silt. The silt tested had a diameter of between 2.5 and 50 _m,

with a median size of 13.9 _tm (figs. 20 and 21). Initial threshold was obtained while there was trapped

air outgassing. After a few minutes, the threshold could not be repeated. Thresholds were readily

obtained with silt agglomerates. These were naturally occurring agglomerates which were sifted into

well-sorted specimens with a median size of 500 I.tm.

Fly Ash

Thresholds were obtained with fly ash, which is the fractional product of coal combustion that is

carried along with the gases and smoke. It is separated from the smoke by electrostatic precipitators

and/or bag houses. The sample tested in MARSWIT consisted mostly of spherical particles 1 to 30 I.tm

in diameter with a median size of 14.8 lam and a density of 2.41 gm/cm 3 (figs. 22 and 23). The fly ash

was obtained from the Arapaho Test Facility in Colorado, which is operated by the Electric Power

Research Institute of Palo Alto, CA.

Xerox Toner

Xerox toner is used in the processing of Xerox copies. It consists of thermoplastic spheres, impreg-

nated with carbon black, which are 8 I.tm in diameter (size information was supplied by the manufac-

turer). The toner was used in a mixture with fine (100-I.tm-diameter) sand to determine the threshold of
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mixturesof particles.A 1:1mixture (by volume)wasused,andsaltationwasobtaineduntil almostall of
thesandgrainshadbeenremoved,asdeterminedbyvisualobservation.Thetoneris blackandthesand
is white; thusthegraymixture turnedblack asthesandwasremovedby thewind. Testsweredoneat
martianpressureandwererepeatedat apressureof 1bar.

Quartz Sand

Quartz sand, purchased from foundry supply houses, was obtained in seven size groups with median

size between 100 and 500 _tm in diameter (fig. 24). It was not used in fine-particle experiments except

as a "kicker" to initiate the movement of fine particles (see Basalt) and in a mix with Xerox toner.

Montmorillonite Fractile

Samples of montmorillonite fractile were supplied by the Jet Propulsion Laboratory (JPL) for salta-
tion tests. Thresholds were obtained in the CWT run in a vacuum chamber. This tunnel was used rather

than MARSWlT because only a small quantity of material was available. The montmorillonite was

loosely collected into large agglomerates which were not separated for the tests. The agglomerates were

between 100 and 1000 l.tm in diameter, with a median of 490 p.m, as determined with a sonic sifter. The

deagglomerated sample ranged from 1 to 13 t.tm in diameter, with a mass median size of 2.7 I.tm as

determined with a Coulter counter (figs. 25 and 26).

Copper

Threshold tests were run with copper particles of nominal size 13 I.tm in diameter, and density

8.92 gm/cm 3. The original purpose of these tests was to determine the effect of particle density and
electrostatics on the threshold. Some of the tests were run on an aluminum-foil floor which provided a

conducting surface. Another test was conducted with aluminum on both the floor and the ceiling of the

tunnel, with a 10-kV potential applied. Neither case showed a significant difference from runs made

over a fixed sand floor. The nominal particle size of the copper powder was 13 _m, but there were many

agglomerates of between 60 and 120 I.tm, which greatly influenced the threshold (fig. 27).
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APPENDIX B

ERROR ESTIMATION

The major factors that have caused variations in threshold measurements in MARSWIT are

1. Measurement errors

a. Pressure

b. Temperature
c. Threshold

d. Calibration

2. Particle sorting and sizing

3. Particle agglomeration

4. Moisture content and humidity

5. Bed length

6. Bed emplacement methods

7. Particle shape
8. Electrostatic effects

9. Interparticle forces

Except for (1), it is not correct to call these factors "errors." They are variables that affect threshold,

and there are no standard or "correct" values for them. As particle size decreases, all of these factors

take on greater importance and cause a greater variance in threshold, except (lc). It is well known that

the determination of threshold is subjective--two people looking at the same bed will call threshold at

different velocities. This is true even when an aid such as a laser or electrostatic probe is used, although

the difference in this case is greatly reduced. This difference is largest with larger particles and smaller

with smaller particles, because the difference between first movement and absolute threshold decreases

with decreasing particle size.

The velocity equation is

V = C(1015 P- T/273 Ho) 1/2

where

C = aconstant

P = dynamic pressure, mbar

Ho = chamber pressure, mbar

T = temperature, K

It can be seen that velocity is proportional to the square root of temperature and dynamic pressure

and inversely proportional to the square root of chamber pressure. As chamber pressure becomes small,

the error in velocity becomes large, with a small error in chamber pressure. This is the most critical

factor, since chamber pressure is raised by the air used to drive the tunnel, which exhausts into the
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chamber.This becomesmostsignificantatthe lowestpressuresandthehighestvelocities,wherethe
mostair is ejected.

Theeasiestway to evaluateerrors(la) to (lc) is to look at thedatarepeatabilityfor thethreshold
velocity of abedof thesamematerialsin alternatetests.Sometestsconductedin October1976onglass
microspheresgavethefollowing resultsat 5 mbar:

Diameter, _ Repeatability, %

10-5 +14

44-74 _+14

74-149 _+10

149-250 +6

210-420 _+4

297-590 +5

350-710 +5

We thus see that repeatability is a function of particle size for this class of materials, and that it is

best for the middle-sized particles of 210 to 420 lam.

Calibration Errors (ld)

Calibration errors can be determined by comparing data for a specific material with data obtained in

many otherwind tunnels for thesa me material. This has revealed that there is as much as a twofold dif-
ference in thresholds obtained for the same material by different investigators. MARSWIT data falls
somewhere between the extrem-es.

Particle Sorting and Sizing (2)

In MARSWIT, there has been a major problem in obtaining or producing uniformly sized materials

in the smaller sizes.The limited experimental work that has been done here indicates that particles being

of mixed sizes has an important effect on threshold, initial threshold values being influenced by the

larger particles in the mixture. Even the determination of particle size is not simple, since different

methods use different properties of the materials, and all methods are prone to subtle errors resulting

from necessary assumptions.

Most of the particles used in these tests were sorted using dry sieving. While a sieve will not allow

particles larger (ban the-me-sh 0penings to pass throughl there is no guarantee that smaller particles will

pass through. It has been noted that in many cases, up to 50% by mass of sieved material consists of

smaller thanthesieve openings.particles ........ Small particles cling tenaciously to the larger particles by

electrostatic and other interpart!c!e forces. Dry sieving becomes less effective as particle size decreases,

and for particles of under23 _tm it is not generally iJseful.
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Particle Agglomeration (3)

Particle agglomeration is most important for the smallest sizes of materials. It is strongly dependent

on interparticle forces, especially those resulting from particle humidity and electrostatics. Many

agglomerates are originally formed by electrostatics, and then as they pick up moisture they lose their

charge but remain held together by the moisture. Other materials form cakes as they adsorb moisture,

and these are not easily deagglomerated. It is obvious that if 8-I.tm particles are agglomerated to

80-1am-diameter agglomerates, the threshold will be greatly affected. It can be difficult to size agglom-

erates, as they tend to break up with many of the sizing methods used.

Moisture Content and Humidity (4)

Boiling of volatile materials at low pressure (because the boiling point is lower) causes fluidization

of the bed and reduces the threshold by up to an order of magnitude (ref. 15). It was determined that as

little as 2% moisture by weight can cause boiling. Walnut shell particles were heated to remove moisture

before testing. Besides this boiling effect, the direct effect of humidity on threshold caused by particle

agglomeration and/or interparticle force needs to be further investigated (refs. 13 and 16).

Bed Length (5)

The effect of bed length on threshold velocity was investigated using three sizes of glass micro-

spheres. It was determined that if a bed length larger than a critical length of 200 cm is used, there is no

data error due to variation in bed length.

Bed Emplacement Methods (6)

The importance of bed emplacement methods is just becoming known. The total variation in U, t

due to bed emplacement method can exceed 100% for particles in the 10-1am range in atmospheric-pres-

sure tests. Fortunately, the low-pressure tests in MARSWlT are not affected by bed-emplacement meth-

ods. This is because when the chamber is pumped down to martian atmospheric pressure, the air

entrapped between the particles is outgassed, and the particles in the bed are loosened and redistributed.

Particle Shape (7)

Particle shape has not been systematically investigated in MARSWIT. Walnut shell was included in

the experiments partly because its shape is very similar to that of natural sand.

Electrostatic Effects (8)

There are two ways in which electrostatics may affect the saltation threshold. One is a direct effect

in which the electrostatic forces bind particles to each other and to the surface. This interparticle force
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maybethepredominantforcefor largerparticles,but interparticleforcesother thanelectrostaticpre-
dominatefor particleslessthan15gm in diameter(ref. 8). Thesecondway in which electrostaticforces
affectsaltationthresholdis by forming fineparticlesinto agglomeratesthat aremoreeasilymovedby
thewind (refs. 17and18).Thismaybeavery importantprocesson Mars,wherelong-lastingagglom-
eratesmaybe formedasaresultof acombinationof high-speedcollisionsat low atmosphericdensities
andvery low levelsof atmosphericmoisture.Most electrostaticeffectsaredifficult to assess,asthere
areavarietyof factorsthataffectthechargingprocess,andit isdifficult to obtainrepeatableexperimen-
tal results.

Other Interparticle Forces (9)

Besides electrostatic forces there are other significant interparticle forces. These include capillary,

molecular, and chemical forces, as well as surface roughness and tackiness. These were investigated

not in MARSWlT but in CWT. They were tested at low and zero gravity, where the interparticle force is

the predominant force resisting saltation for small particles. In these tests the total interparticle force,

including electrostatic forces, was obtained. Inaccuracies include errors in determining gravity level and

in obtaining a statistically sufficient amount of data.

Capillary interparticle forces may be observed by saltation experiments on particles with different

moisture contents. Reference 16 presents data showing the increase of threshold with increased moisture

content. Experiments with varying moisture content cannot readily be done at low pressure, because of

the "boiling off" of moisture at low pressure.

Chemical effects include salt bonding (ref. 13). Wind tunnel test results may be affected when salt or

other chemicals remain on the particles after the moisture has boiled off at low pressure.

The effects of molecular forces and surface roughness have not been investigated here.
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TABLE 1.- INTERPARTICLEFORCEAS
A FUNCTION OFPARTICLEDIAMETER

Particlesize,
gm

15
38

125
700

1080

Percentof threshold
velocity dueto

interparticleforce

56
50
42
26
18

TABLE 2.- PARTICLESAND THRESHOLDS

Material

Silicic pumice
Crushedbasalt
Montmorillonite
Fly ash
Xerox toner
Groundnutshell
Groundnutshell
Groundnutshell
Groundnutshell
Glassmicrospheres
Glassmicrospheres
Glassmicrospheres
Glassmicrospheres
Silt
Silt agglomerates
Copperpowder
Copperoxide
Silicasand

Density,gm/cm3

2.2
2.85
0.1
2.41

Diameter,ktm Massmedian
diameter,gm

1
1.1-1.35
1.1-1.35
1.1-1.35
1.1-1.35
2.4-3.0
2.4-3.0
2.4-3.0
2.4-3.0

1.8-32
3.3-45

1-13
2.8-63

13.5
16.6
2.7c

14.8

2.4

2.4

8.92

6.3

2.65

8
___b

20-43

43-61

61-88

5-44

44-74

53-105

74-149

8

12

39

51

74
___b

68

91

111

2.5-53
___b

12-200

200-500

13.9

500
___b

8
___b

Friction threshold

velocity, a

U, t cm/sec
at 10 mbar air

___b

550

140 d

53O
___b

330

215

185

160

275

220

230

260

500

355

38O
___b

200-300

aActual measured velocity x (C'f/2) 2. This needs to be corrected for outgassing, for temperature, and for

CO2 gas to obtain martian friction velocity (see ref. 10).

bUndetermined.

CAgglomerated to 490 _tm mass median diameter.

dExtrapolated from 15 mbar pressure.
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TABLE 3.- WIND TUNNEL TESTRUNS
(low-pressureMARSWIT testsunlessotherwisenoted)

Materialsusedanddatesof tests.
Whenmultiple runsdoneonsamedate,suffix A, B, C added

7/6/87
7/7/87

Silicic pumice(SugarLoaf Mountain)
No thresholdobtained
10mbarwith sandin front

Crushedbasalt(ASU)
4/1/77
1/28/87
2/10/87
3/18/87
4/7/87
5/27/87
7/7/87
7/8/87
7/9/87
7/10/87
8/6/87
10/22/87
10/27/87A,B
10/28/87ATB_C

5/14/87

Basaltfrom Iversen(no threshold)
With 500-lamsandin front
With 200-1amsandin front
With 200-pmsandin front
Somethresholddataatlow pressure
Low gravity;KC 135;CWT
15mbar;VGVC; CWT
15mbar;VGVC; CWT
15mbar;VGVC; CWT
15mbar;VGVC; CWT
CWT; low pressure
With 200-gmsandin front
Movie runs
Movie runs

Montmorillonitefractileparticles (JPL)

CWT

4/24/87

Fly ash (Electric Power Research Inst.)

Xerox

3/29/76

3/30/76

3/31/76

toner (Xerox)

No threshold obtained

Toner-and-microsphere mixture;

5 mbar

Toner-and-microsphere mixture;

1 atm

4/1/76

Crushed calcite (Commercial Minerals Co.)
With fines removed
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TABLE 3.- CONCLUDED

Walnut shell
7/1/76
5/27/87
4/13/76
4/30/76B,C
3/1/78
4/23/76
5/28/76
9/15/77
2/15/78A
4/20/76
5/28/76
2/8/78

(BernardSirotta,Inc.)
12].tm
23-35pm; low gravity;CWT
20-43I.tm
20-43lam
20-43gm; CO2 and air

43-61 gm

43-61 lam

43-61 lain

43-61 gm; CO2 and air

61-88 gm

61-88 pm

61-88 pm; CO 2 and air

Glass microspheres (Ca taphote Corp., Jackson, MI)

3/17/76 A 5-44 lim (size XLX)

10/26/76 B

2/9/76

2/24/76

3/17/76 B

10/22/76 A

10/22/76 B

11/5/76

10/21/76 A_B

5-44 gm (size XLX); 4-ft bed

44-74 gm (size L)

44-74 lam (size L)

44-74 _m (size L)

44-74 _m (size L); 3-m bed

44-74 gm (size L); 1.2-m bed

53-105 I-tm (size ML)

74-149 gm (size M)

Silt

5/7/76

5/11/76

6/1/76

6/10/76

12/1/76

3/24/8.1

3/18/76

3/2/77

6/21/77

Heated, screened

Sifted

Moistened, sifted

Dried and sifted

Agglomerates

Copper powder

On aluminum foil floor; 1 atm

Aluminum on floor and ceiling; 1 atm

3/19/76

Copper oxide powder
No threshold obtained
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Figure3.- CarouselWind Tunnel.
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Figure 12.- Basalt interparticle force between 1 and 0 g.
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Figure 13.- Silt and silt agglomerate threshold.
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Figure 14.- Ground walnut shell and crushed quartz.

31



Figure 15.- Glassmicrobeads(opticalmicroscope).
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Figure 16.- Crushed basalt (scanning electron microscope (SEM) photograph).
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Figure 17.- Basalt size distribution obtained with Coulter counter.
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Figure 18.- Silicic pumice ash (SEM photograph).
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Figure 19.- Silicic pumice ash size distribution obtained with Coulter counter.
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Figure 20,- Silt (SEM photograph).
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Figure 21.- Silt size distribution obtained with Coulter counter.
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Figure 22.- Fly ash (SEM photograph).
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Figure 23.- Fly ash size distribution obtained with Coulter counter.
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Figure 24.- Quartz sand (optical microscope photograph).
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Figure 25.- Montmorillonite agglomerate size distribution obtained with sonic sifter.
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Figure 26.- Montmorillonite size distribution obtained with Coulter counter.
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Figure27.- Copperparticles(SEM photograph).
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